Albert Einstein lança o curso “Gestão da Infraestrutura Hospitalar” em São Paulo

Conhecido pela qualidade, tecnologia e excelência, o Hospital Israelita Albert Einstein lançou para este primeiro semestre o curso “Gestão da Infraestrutura Hospitalar” voltados a gestores da infraestrutura (facilities, segurança, operação e manutenção em ambientes hospitalares), a ser realizado através do Centro de Educação em Saúde ABRAM SZAJMAN, em SP.

hiae - curso

As inscrições para esta primeira turma se encerrarão no próximo dia 04/02, sendo que os interessados devem procurar por mais informações através do site do curso ou clicando sobre a imagem acima.

Outras informações também podem ser vistas no canal de youtube: https://youtu.be/5rH0IxvFq5c

 

 

Anúncios
Publicado em Brasil, Cursos & Seminarios / Congressos, Facility Management | Marcado com , , , , , , , | Deixe um comentário

Por que uma matriz energética diversificada e verde é importante?

Fonte: Engenharia Compartilhada

Acesse aqui a matéria em sua fonte.

Ambientalistas, cientistas e a Organização das Nações Unidas (ONU) afirmam uníssono: as mudanças climáticas são um grande risco para a manutenção da vida humana na Terra e que a queima de combustíveis de origem fóssil é a maior de suas causas.
Em uma conferência sobre a ação climática realizada em maio de 2018, o secretário-geral da ONU, António Guterres, ressaltou que o aquecimento global é a maior “ameaça existencial” para a humanidade. Não é à toa que a entidade estabelece a energia como um de suas maiores áreas de ação. O Objetivo de Desenvolvimento Sustentável número 7 (ODS 7), cujo objetivo é “assegurar o acesso confiável, sustentável, moderno e a preço acessível à energia para todos”, serve de base para o fomento de alternativas energéticas sustentáveis ambiental, social e economicamente.
De acordo com o Painel Intergovernamental sobre Mudanças Climáticas (IPCC), a queima de combustíveis de origem fóssil é responsável por aproximadamente 80% das 40 bilhões de toneladas de dióxido de carbono que a ação humana emite para a atmosfera anualmente. E além disso, relata a Organização Mundial da Saúde (OMS), a poluição gerada afeta a saúde de mais de 80% dos habitantes das regiões urbanas do planeta.
“Investimentos em infraestrutura limpa e verde precisam ser feitos em escala maior em todo o mundo”, afirmou Guterres. “Para tanto, precisamos de lideranças do ramo das finanças e investimentos, e que governos locais, regionais e nacionais decidam por grandes planos de infraestrutura nos próximos anos.”
E uma das nações que lidera esse movimento é exatamente aquela que mais polui: a China.
CHINA: DE VILÃ A ATIVISTA AMBIENTAL
Segundo levantamento da McKinsey Global Institute, a demanda mundial por energia está em lenta curva de queda. No entanto, na China, a necessidade de abastecer suas indústrias que fornecem produtos para todo o mundo só faz este índice crescer. Hoje, 23% de toda energia global é consumida pelos chineses – os Estados Unidos, em segundo lugar, consomem 16%. Se a tendência atual se mantiver, em 2035, a China será responsável por 28% do consumo mundial de energia, ou seja, mais de um quarto do total.
Com a matriz energética baseada principalmente em queima de carvão mineral, a China é quem mais sofre com as consequências da poluição. Um estudo produzido por pesquisadores dos Estados Unidos, Canadá, China e Índia mostrou que, só em 2013, 5,5 milhões de pessoas morreram em todo o mundo em decorrência dos problemas de saúde causados pela poluição – 1,6 milhões deles, chineses. “Globalmente, a poluição do ar é o quarto maior fator de mortalidade mundial, e é de longe a principal causa ambiental de doenças”, disse Michael Brauer, professor da Universidade da Colúmbia Britânica, em conferência.
O país mais populoso do mundo – hoje com 1,3 bilhão de habitantes – então iniciou uma revolução verde em sua matriz energética. Em 2017, o governo federal chinês anunciou o investimento de US$ 360 bilhões em energia renovável até 2020 e desistiram de construir 85 novas usinas de carvão. Apenas no primeiro ano do programa, o aporte financeiro foi de US$ 126,6 bilhões e a própria ONU reconheceu o esforço chinês na produção de energia solar: dois anos antes do prazo, o país já ultrapassou seu objetivo de gerar 105 gigawatts a partir de módulos fotovoltaicos – suficiente para alimentar 30 milhões de residências.
Esse conjunto de ações, além de oferecer contrapartida ambiental, aumenta o interesse do mercado de energia no país. De acordo com a consultoria EY, o mercado de energia chinês é o mais atrativo do mundo.
ENERGIAS ALTERNATIVAS FAZEM CRESCER A ECONOMIA E O MERCADO DE TRABALHO
A ONU Meio Ambiente afirma que hoje, 20% da energia consumida globalmente é proveniente de fontes renováveis – e este índice cresce rapidamente. A entidade prevê que em dez anos as matrizes energéticas limpas podem se apresentar já mais baratas do que os combustíveis fósseis e que, até 2050, 100% da energia mundial seja origem limpa.
O relatório produzido pela entidade aponta que os interesses da indústria de energia convencional, baseada em queima de combustível fóssil, é um dos principais entraves para que as fontes renováveis alcancem os 100%, sobretudo nos EUA, Japão e África. No entanto, o relatório indica também que, durante três anos seguidos, a economia global cresceu 3%, mas as emissões de gases nocivos relacionadas ao setor energético diminuíram.
De acordo com o relatório, How technology is reshaping supply and demand for natural resources, produzido pelo McKinsey Global Institute, essa é uma tendência para o futuro. O uso menos intensivo da energia e o aumento da eficiência energética podem ter um impacto de 40% a 70% na produtividade global durante os próximos 20 anos.
Energias renováveis podem turbinar também o mercado de trabalho. Para a Organização Internacional do Trabalho (OIT), ao menos 24 milhões de novos postos de trabalho serão criados no mundo até 2030 se as políticas certas para promover uma economia verde forem implementadas – sendo 2,5 milhões deles somente em setores de geração de energia.
Segundo o relatório Perspectivas Sociais e de Emprego no Mundo 2018: Greening with Jobs, produzido pela mesma entidade, atividades sustentáveis já empregam 1,2 bilhão de trabalhadores. “A economia verde pode permitir que milhões de pessoas superem a pobreza, além de proporcionar condições de vida melhores para a atual geração e também para futuras. Esta é uma mensagem de oportunidade muito positiva em um mundo de escolhas complexas”, disse a diretora-geral adjunta da OIT, Deborah Greenfield, em comunicado.
ENERGIAS ALTERNATIVAS NO BRASIL
O mesmo documento produzido pela OIT aponta que a América Latina será uma das maiores beneficiárias das políticas voltadas à energia verde. “Na América Latina e no Caribe, pelo menos 1 milhão de empregos serão gerados como resultado do uso de energias renováveis, maior eficiência energética em imóveis e maior demanda por carros elétricos, e outras tecnologias de mudança no padrão de consumo para combater as mudanças climáticas”, afirmou Guillermo Montt, da OIT, em comunicado.
Publicado em Artigos Diversos, Eficiência Energética, Sustentabilidade | Marcado com , , | Deixe um comentário

Estado de Nova York define meta de usar energia 100% limpa em 2040

Fonte: Exame.com

Clique aqui para acessar a matéria em sua origem.

O governador de Nova York, Andrew Cuomo, anunciou nesta quinta-feira um plano de longo prazo para que esse estado americano consiga se manter com energia 100% limpa em 2040.

A iniciativa “ordenará por lei que a energia de Nova York em 2040 seja 100% livre de carbono”, afirmou Cuomo, antes de descrever o objetivo do plano como o “mais agressivo” do país.

Estamos propondo o plano “mais ambicioso do país de energia livre de carbono, com o objetivo de eliminar totalmente nossa marca de carbono”, disse o governador.

Em setembro do ano passado, a Califórnia se tornou o primeiro estado a elaborar uma lei para avançar na obtenção de toda a sua energia de fontes renováveis até 2045. Nova York já tinha se comprometido com a meta de fazer com que 70% da energia elétrica fosse renovável em 2030.

O novo programa anunciado por Cuomo significa mudar objetivos em medidas e datas: quadruplica a meta da energia eólica em campos no mar, de 2.400 megawatts em 2030 para 9.000 em 2035, e duplica a energia solar de 3.000 megawatts, como se esperava para 2023, para 6.000 megawatts de energia solar em 2025.

Segundo as autoridades estaduais, os novos objetivos contarão com um investimento público de US$ 450 milhões e com US$ 5,025 bilhões em investimentos privados.

Também será elaborada uma estratégia para o desenvolvimento dos códigos de eficiência e sustentabilidade energética dos edifícios públicos.

“A mudança climática é uma realidade e as consequências de se atrasar são uma questão de vida e morte”, declarou Cuomo durante a apresentação do denominado “New Green Deal” (Novo Pacto Verde), uma iniciativa do Partido Democrata em nível nacional.

Os planos de Nova York e da Califórnia, controlados por governadores democratas, contrastam com a política do presidente dos Estados Unidos, Donald Trump, do Partido Republicano, que em junho de 2017 anunciou a decisão de tirar o país do Acordo de Paris, embora a saída não se torne efetiva até 2020.

“Enquanto o governo federal ignora vergonhosamente a realidade da mudança climática e não toma medidas significativas, nós lançamos o primeiro New Green Deal da nação para aproveitar o potencial da economia de energia limpa”, argumentou Cuomo.

Publicado em Eficiência Energética, Mundo, Sustentabilidade | Marcado com , , | Deixe um comentário

2019 – Ano da eficiência energética!?

Li há pouco um pequeno artigo através de um sistema de mensagens regulares no qual estou inscrito, que este ano de 2019 será o ano da eficiência energética…..; será?

Esta minha pergunta não deve ser encarada como seticismo de minha parte, mas sim, como um pequeno toque de bom senso, ou mesmo de “provocação”, apesar de odiar esta palavra…

Quando falamos em eficiência energética em um equipamento, sistema, ou até mesmo em uma edificação, estamos nos referindo, na realidade, a um CONJUNTO de FATORES que condizirão (ou não…) ao resultado esperado.

Veja por exemplo um sistema central de ar condicionado por expansão indireta (sistema de água gelada), no qual teremos em nossa central os seguintes equipamentos / principais componentes:

  • Resfriadores de líquido (ou chillers como são majoritariamente conhecidos)
  • Bombas de água gelada
  • Bombas de água de condensação (quando se tratar de um sistema com condensação a água)
  • Torres de resfriamento ou arrefecimento (quando também se tratar de um sistema com condensação a água)
  • Redes hidráulicas e todos os seus componentes
  • Controles para a automação do sistema (local ou de forma centralizada)
  • Sistemas de potência para a alimentação e distribuição, incluindo o CCM (Central de Comando de Motores) e painéis elétricos
  • Infraestrutura seca para a alimentação (elétrica e automação)
  • Infraestrutura civil que abrigará o sistema e permitirá a sua proteção, o adequado acesso, etc…

Ao se falar em desempenho e, consequentemente, em eficiência energética, deve-se entender que:

  1. Ainda que o chiller tenha sido adequadamente projetado para o consumo de 0,6 Kw/Tonelada de Refrigeração ou TR, ele será inserido em uma instalação envolvendo tubulações, sistemas de bombeamento (vazão de água em seus trocadores), etc, que influirão DIRETAMENTE em seu desempenho e consumo
  2. Bombas centrífugas também projetadas para uma vazão de 150 m3/h (por exemplo), dependerão não só do projeto para a sua instalação, como também da montagem e respeito ao próprio projeto, para que disponibilizem, DE FATO, os 150 m3/h previstos
  3. A lógica funcional definida pelo projetista seja implantada com o sistema, assegurando, por exemplo, o escalonamento de estágios para a entrada ou saída (carregamento ou descarregamento) de estágios e resfriadores, assim como para a operação de bombas
  4. Os parâmetros ajustados para a operação do sistema sejam INTEGRALMENTE RESPEITADOS pelas equipes de operação, evitando o “efeito autoditada” sem referências ou embasamentos técnicos
  5. Que o sistema de controle seja PARTE INTEGRANTE EM PROGRAMAS DE MANUTENÇÃO E CALIBRAÇÃO / aferição
  6. A MANUTENÇÃO SEJA ADEQUADAMENTE executada, assim como recomendam os fabricantes
  7. Deverá coexistir uma ENGENHARIA DE MANUTENÇÃO atuante, monitorando e atuando sobre resultados, segundo o tradicional conceito do PDCA e demais ferramentas de gestão e confiabilidade

Estes poucos exemplos assima dão a referência destes fatores altamente influenciadores no desempenho técnico e energético de sistemas, o que também demandará por:

  • Uma melhor e maior qualidade em projetos, que devem contar com a participação de profissionais da operação e manutenção em seu time de discussão e desenvolvimento, assim como devem ser incluídos no processo de COMISSIONAMENTO
  • Um processo de COMISSIONAMENTO TÉCNICO adequado e abrangente (incluindo projeto, recebimento de equipamentos, instalação e montagem, realização de testes funcionais, de desempenho ou performance e integrados)
  • Uma adequada documentação final de obra e instalações
  • Um adequado processo de transferência de conhecimentos entre as equipes de instalação / obra e manutenção e operação (condição esta também aplicável quando da transição entre empresas de manutenção em um contrato)
  • O treinamento CONTÍNUO de equipes de operação e manutenção, as quais DEVERÃO conhecer detalhes do projeto
  • Muitas vezes, a contratação de empresas especialistas e autorizadas para a execução de trabalhos em equipamentos
  • A adequada DOCUMENTAÇÃO (geração do histórico de O&M) ao longo da vida útil dos ativos e sistemas
  • Uma gestão adequada desta operação e manutenção, com foco na GESTÃO DE ATIVOS

blog.001

Ou seja, podemos concluir de que o resultado e a performance de equipamentos e sistemas demandam não só por um investimento eficaz no início de um ciclo de vida (CAPEX), como um investimento ao longo de todo o ciclo de vida de um equipamento, sistema ou empreendimento (OPEX).

Com isto, retorno agora a minha pergunta no primeiro parágrafo….

Será que, de fato, aprendemos até este ano de 2019 que as nossas operações demandam por todo este cuidado?

Aprendemos que o investimento deve ser contínuo?

Aprendemos que a compra ou a contratação de serviços não é tão simples como se comprar alguns produtos, através de especificações mais facilmente comparáveis?

Aprendemos que gerir uma operação requer inteligência, estratégia e controle?

Será que temos todas estas convicções em 2019?

Enfim, termino este post deixando a resposta para os leitores…

 

Por Alexandre M F Lara

 

 

Publicado em Artigos do Autor, Comissionamento, Eficiência Energética, Facility Management | Marcado com , , , , | Deixe um comentário

Designing health care facilities and medical campuses

Fonte: Consulting Specifying Engineer

Acesse aqui a matéria em sua fonte.

Hospitals, clinics, and similar facilities are among the most demanding an engineer can tackle—the technology is evolving rapidly, hospital managers are increasingly budget-conscious, and assist in saving lives.
Respondents

CSE: What’s the biggest trend you see today in health care facilities and medical campus projects?

Andrew Flanagan: Health care campuses are complex, evolving systems that transform with best practices for patient care, technological advances, and large-scale politics. From a mechanical, electrical, and plumbing (MEP) perspective, both existing and new facilities seem to be focusing on robust, low-maintenance core systems to allow several generations of retrofits throughout their usable square footage with minimal impact to adjacent departments. It is essential for these core MEP systems to be scalable and work at various duty points for the management of the health care facility.

Mikhail Fuks: The biggest trend is the continued movement for more outpatient facilities across all health care providers. These facilities are no longer in traditional campus layouts; instead, they are moving into retail centers, mixed-use high-rises, and medical office buildings disconnected from the central campuses.

Gary Hamilton: Health care facilities are changing quickly, but the pace of technological change is outstripping the rate at which we can make alterations to our existing medical facilities. The next generation of health care buildings will be very different from the hospitals, medical offices, and clinics that we are familiar with today. A revolution in building design is already upon us, prompted by an acceleration of technological innovation, rapidly aging populations, changing expectations of how health care should be provided, and a growing realization that the environment is an important part of the healing process.

Alex Harwell: A focus on catching up existing anchor facilities from the past decades of deferred repair and renovation projects. We have seen a much-needed shift of the capital pendulum from new construction to reinvestment in critical older facilities.

George P. Isherwood: We see a trend toward medical office buildings and ambulatory centers (23-hour-stay facilities). We also are seeing significant investments in new infrastructure for aging facilities due to hospital system mergers.

Jeremy Jones: Many health care systems in our area are increasing their focus on behavioral health populations. These patients have very special needs that require them to be separated from the general hospital population. Some health care systems choose to implement a behavioral health wing, while others choose to care for those patients in a separate facility. Preventing self-harm by these patients is also a major concern for health care systems and their design teams. There are multiple anti-ligature products and strategies available in the market to provide a safe environment for behavioral health patients while preserving their dignity. It does take significant foresight and planning on the part of design teams, however. The adoption and mandatory compliance with USP 800: Hazardous Drugs-Handling in Healthcare Settings is resulting in a very steady stream of pharmacy upgrade and/or replacement projects. Much of this new standard involves the handling of pharmaceuticals, but there are MEP implications as well, such as an increased focus on filtration, dilution, and proper pressurization. Some clients are purchasing modular pharmacies and integrating them into existing facilities, while others are engaging in major renovations. The deadline is looming, and most hospital systems will require major upgrades.

Brian Kannady: One trend I have noticed is the construction of multiple, smaller facilities. It seems that health care systems are trying to bring services to patients, rather than forcing patients to travel to a more traditional downtown campus. These smaller facilities can have both primary care and specialized functions including ambulatory surgery, imaging, or acute care.

CSE: What trends are on the horizon for such projects?

Hamilton: Patients armed with information about their conditions are already informed consumers of clinical care, rather than passive recipients, and they will increasingly want to access services on smartphones and mobile devices. But the impact of technology will go far beyond simply providing mobile apps so patients can have basic interactions with doctors or book appointments. The revolution will be driven by a combination of the widespread use of networked smart sensors, vastly increased computing power, better telecoms, improvements in robotics, and strides forward in artificial intelligence (AI), together with algorithmic computer decision-making.

Harwell: Holistic system analysis for prioritization, timing, and coordination of large-scale equipment replacements will be necessary to meet many owners’ expectations of the practical and effective use of their repair and improvement dollars. This will likely materialize in increased predesign condition assessments and studies for those facilities, with the vision and capital to implement a strategy rather than a response.

Isherwood: We believe developers who usually don’t work on health care-related facilities are moving into the marketplace for these types of buildings.

CSE: Are you noticing an increase in the building of new projects, versus retrofitting existing buildings?

Harwell: This question is coming up, as it should, for many large-scale projects. However, at least in my experience, there is still significant investment being channeled to existing facilities in lieu of new, replacement construction for the anchor facilities. For older and smaller community facilities where land may be relatively affordable and/or the market base has shifted away, new construction continues to be the preference. The driver for this decision is often varied and not necessarily solely dependent on the first cost of construction. Some facilities have developed a specific reputation, team, or location that particularly works for that system, which can outweigh potential savings in relocation to a new-construction facility.

Hamilton: There is a bit of both. There are much more medical office buildings being constructed in more rural communities to expand the footprint of some health care systems. Some health care systems also have small prompt-care and urgent care locations in strip malls and other areas where the locations can facilitate community care.

Jones: I wouldn’t characterize what we’re seeing as an increase in new construction, but there certainly hasn’t been a decline. The market is strong. Many were predicting that the Affordable Care Act would force consolidation, limit health care system spending on facilities, and shift the focus to retrofit of existing assets over new construction. That hasn’t really occurred.

Flanagan: Health care organizations aim to make the most out of their existing infrastructure while remaining adaptable and looking for opportunities to constantly evolve health care delivery. New facilities focus on delivering a host of primary care offerings closer to the consumer with clinics and medical office buildings. Existing large hospitals continue to manage, maintain, and extend the life of existing infrastructure to provide in-patient beds and services while performing retrofits to increase the patient experience.

Fuks: Currently, more existing buildings are being retrofitted to buy time as the health care market becomes clearer from the standpoint of federal policy, state seismic mandates, and procedure reimbursements from insurance companies.

Engineers from Dewberry have seen their health care facility and medical campus projects shift from new construction to investments in the repair and renovation of existing facilities. Courtesy: Dewberry

CSE: Tell us about a recent project you’ve worked on that’s innovative, large-scale, or otherwise noteworthy. In your description, please include significant details-location, systems your team engineered, key players, interesting challenges or solutions, etc.

Hamilton: I am currently designing a 300,000-sq-ft community hospital for the Allegheny Healthcare Network in Pittsburg. The main engineering innovation associated with this project is the use of a modular central utility plant (MCUP) to solve the challenge of the lack of program space in the hospital building to locate a plant. This plan was designed to contain chillers, cooling towers, boilers, water-treatment systems, pumps, heat exchangers, pressure-reducing stations, variable frequency drives (VFDs), and controls. This type of plant is ideal for this project because the plant was designed to be expandable to meet the requirement of future needs and also handle the cooling and heating load of an existing medical office building if needed. The hospital is designed to be a 110-bed, Day 1 facility, with plans to expand to 170 beds in the future. While the MCUP is designed to meet the requirements of a 120-bed hospital, only modules with a capacity to serve Day 1 loads will be installed initially. The complete MCUP will include four chillers, three steam boilers, three hot-water boilers, and four cooling towers, whereas the Day 1 installation comprises three chillers, three cooling towers, three steam boilers, and three hot-water boilers along with the supporting accessories. Thus, the upfront capital costs are only spent on the equipment and associated enclosures that are needed to support Day 1 loads. HKS is responsible for the planning and architecture and Gilbane is the construction manager for the project.

Flanagan: In the past decade, Interface Engineering has provided the MEP design services and delivered two large-scale LEED Platinum facilities for Oregon Health & Science University. The Center for Health and Healing is a 400,000-sq-ft facility built to house a variety of lab, ambulatory, and rehabilitation functions. The core and shell of the building were completed in 2006 and featured a host of core MEP systems including onsite sewage treatment, rainwater harvesting, airside and waterside heat recovery, daylight harvesting, and solar-photovoltaic (PV) and thermal energy collection, all feeding into robust core hydronic and plumbing distribution. Tenant Improvements continue through today as the organization works to keep up with the evolving demands of health care delivery. The second facility, the Collaborative Life Sciences Building, is a 650,000-sq-ft facility built to house a variety of lab, research, and learning functions.

Kannady: Not one specific project, but rather several projects of similar type that we have recently been a part of. These projects are a combination of health care practices or systems, professional or collegiate sports programs, and a university system. These buildings are unique in that they can provide sports medicine, imaging, physical therapy, and sports performance to the elite or collegiate athlete and may have a research component. There are many challenges in this type of project (codes, design standards, information sharing, etc.), but they offer a unique opportunity to provide multiple services in a single location.

Isherwood: PBA provided MEP engineering design services for a 6-story critical care tower for DMC Children’s Hospital of Michigan. The new tower used lean design principals, which included building cardboard walls in an unused ice area for the users to walk through and test different layouts to ease workflow patterns.

Harwell: We have recently completed smoke-control system assessments of multiple, existing older hospitals with systems dating back to the 1950s. The charge was to provide a complete picture of the installed smoke-control systems across the facilities including where they are, how they are supposed to work, and how to test them in accordance with the current NFPA standards. This included exhaustive field and drawing investigations to identify, inventory, and assess both the systems found and what may be required for the structures they serve. These assessments included evaluations of not just the current applicable codes, but also those that were in place at the time of the portion of the facilities’ construction. We followed this by generating system maps, one-lines, and sequence-of-operation summaries to provide the facility with the tools needed to maintain these systems going forward.

CSE: Describe a stand-alone medical facility, such as a surgical center, that you worked on recently. Describe its challenges and solutions.

Fuks: We recently completed construction on a new 4-story medical office building for urgent, primary, and specialty care functions in downtown Los Angeles. The project also included building a new parking structure and connecting all site buildings onto the same electrical power service with site distribution. The project was challenging due to the tight aspects of the site for building placement, utility distribution, and the speed of construction. The construction phases were divided into superstructure, shell/core, and tenant improvements, but multiple phases were in design at one time and construction overlapped as well. Our team had to work hard to stay coordinated between the different design and construction activities to stay on schedule.

Jones: Most of my recent new-construction projects have been major expansions of existing campuses. However, the unique challenges placed on stand-alone surgical centers are primarily related to the fact that they are remote from the major, shared infrastructure of a large campus. Established medical centers have made investments in emergency power generation, central utilities (chillers and boilers), and other infrastructure, such as medical-gas farms, etc. When an expansion or new building is added to these campuses, tying the new construction into the existing infrastructure comes with an expense, but you don’t have to reinvent the wheel. For a relatively small stand-alone surgical center, creating this infrastructure from scratch requires a proportionally higher investment. For example, consider a surgical center with a 1,000-ton cooling load. If that building is added to an established campus with a lineup of existing chillers with N+1 redundancy, the project will involve adding a 1,000-ton chiller to the existing system. If that facility is a stand-alone building, however, the project would involve something like three 500-ton chillers or two 1,000-ton chillers to provide a similar level of redundancy. That’s a 50% to 100% increase in equipment costs. The same logic would apply to most major infrastructure where redundancy would be best practice. The result may be stand-alone facilities where cost considerations lead to no redundancy or reduced redundancy.

CSE: How are engineers designing such facilities to keep initial costs down while also offering appealing features, complying with relevant codes, and meeting client needs?

Jones: The best way to manage costs in health care is by prioritizing substance over style. We recently had an owner say to the potential design teams during a pre-proposal conference, “If you want the building you design for us to be on the cover of a design magazine, you need to go work for someone else.” The idea was that patients generally have choices when deciding which health care provider to use. While they obviously want a comfortable and clean environment, if the hospital looks extravagant and expensive, with high-end finishes, patients and their families are much more likely to attribute a portion of their high medical costs to the cost of the opulent facility. For us, that means that a reasonable portion of the budget can be reserved for what is important to engineers, such as energy efficiency, maintainability, redundancy, resilience, etc.

Isherwood: Property developers are moving into the medical office building (MOB) arena with design standards that are more orientated toward a shorter-term lease, rather than a hospital that is built to last for several years. The developers are lining up the doctor groups and providing a revenue-generating facility. It will be interesting to see how sustainable these facilities will become in the long term.

Fuks: Design is moving more toward prefabricated assemblies for field installation. This is to minimize the time spent onsite to complete the installation of a system and increase the number of activities that can happen at once while offsite.

CSE: Have you worked on any such projects for overseas clients? If so, how have you found project requirements compare between the United States and other countries?

Isherwood: Our overseas work has comprised bringing U.S. code compliance to less developed countries-designing to U.S. code in comparison to the home country code.

Jones: There are certainly international project expectations that vary greatly from what we see in the United States. We recently worked on a project in Europe, and during tours of their existing facilities, it became clear that the baseline expectation for patient-room HVAC was an open window. Absolutely zero HVAC beyond a radiator beneath the window. Interestingly, their benchmarked infection data was no higher than our heavily ventilated and filtered U.S. patient rooms. Establishing appropriate construction budgets and aligning standards in such an environment can be a challenge.

CSE: How has your team incorporated integrated project delivery (IPD) or virtual design and construction (VDC) into a project? Define the owner’s project requirements and how the entire team fulfilled them using these methods.

Jones: We are finally seeing this trend make its way to the East Coast. Our office’s first true IPD project with a multiparty contract is in the middle of construction on a major hospital expansion in Greensboro, N.C. All profit for the major partners (architect, general contractor, MEP engineer, structural engineer, major trade contractors) is 100% at risk based on meeting the project’s financial goals. At the end of the day, each partner will receive the same percentage of their portion of the profit pool. This is creating an environment that is breaking down the traditional barriers between our individual firms. When a problem arises in the field that would be a change order in a traditional contracting method but is now a threat to all parties’ profitability, I can guarantee that it gets solved collaboratively in a more thoughtful manner. The initial phase involved a big-room, lean process by which the major decisions were flushed out very early and efficiently. This greatly reduced the overall design duration when compared with a more traditional delivery model. The major subcontractors had a role in the production of the documents, which resulted in greater buy-in on major decisions and MEP space planning. The architect, construction manager, trade partners, and engineers all share in the savings generated by this lean process. I am fully convinced that this process will get our project completed significantly faster and at a lesser cost than it would have under a traditional contracting method.

CSE: Is system integration increasing for medical facilities to enhance communication as building systems become more complex?

Hamilton: The technology that we are designing for the new health care environments is no longer a conglomeration of disparate systems but rather a complex mesh of integrated solutions, each providing data to the others. The building management systems talk to tracking systems that communicate with nurse call systems that are integrated to the electronic medical record and interactive patient systems. This results in a very complex system that requires more infrastructure and larger technology rooms.

Fuks: System integration is increasing. Various low-voltage systems within a medical facility are now being equipped with more computing power and, therefore, can provide valuable information to building systems. One example is lighting fixtures that already have occupancy and temperature sensors built in, which allows you to eliminate devices in the initial design. This saves first cost to the construction and provides for a more integrated utility network across the facility.

Harwell: The short answer is yes, but existing older facilities still struggle to make good use of this integration capability. Generations of older, proprietary, closed systems-and the older technicians that are used to them-often resist real integration onto a single platform.

Publicado em Artigos Tecnicos, Facility Management, Mundo | Deixe um comentário

Automação de data center: quão perto estamos?

Fonte: Datacenter dynamics (informação compartilhada pelo PROCEL)

Acesse aqui a matéria diretamente em sua origem.

Especialistas apontam para um aumento na gestão dos dados, sejam eles provenientes da elétrica, ar condicionado ou mesmo dos sistemas de segurança, como detecção de incêndio e controle de acesso. Segundo o CEO da CCN Automação, Luciano Ribeiro, a tendência é que haja uma integração cada vez maior dos diversos sistemas eletrônicos. E tal aumento no volume de dados, exigirá um tratamento diferenciado através de Big Data. Além disso, a Internet das Coisas ganhará cada vez mais espaço no mercado, possibilitando que instalações de qualquer porte sejam monitoradas com baixo custo, gerando dados importantes para análise de toda região geográfica em que o cliente possuir algum tipo de operação.

Impulsionada pelos dispositivos conectados ao data center, a automação ou o que podemos chamar de Inteligência Artificial e Machine Learning aplicada ao data center, já é uma realidade no mercado. Hoje, cada dispositivo conectado gera dados que quando concentrados e processados, se transformam em informações relevantes para melhorias e maximização da operação do data center.

De acordo com a Schneider Electric, a automação é o caminho para obter ganhos operacionais e econômicos no data center, visto que uma abordagem tradicional já não é mais suficiente. “Hoje, para que um data center seja competitivo e sua infraestrutura seja utilizada ao máximo, os gerentes de data centers têm o desafio de tornar a operação mais eficiente, não somente na questão de economia de energia, mas também na maximização da sua capacidade de processamento”, observa o gerente de marketing de produtos da Schneider Electric Brasil, Alan Satudi, ressaltando que isso somente será possível através de tecnologia de ponta para coleta, processamento e análise de dados.

Para a Schneider Electric, hoje no Brasil, a maioria dos grandes players de data center já possui um elevado grau de automação em seus data centers, “Hoje, as equipes estão cada vez menores, o que exige um alto grau de automatização e gerenciamento. Também, é grande a tendência em que os novos equipamentos como geradores, chillers, UPS já venham de fábrica com um grau elevado de eletrônica embarcado, o que facilita e tem barateado os sistemas de automação”.

Automação: como ela deve ser?

Para o CEO da CCN Automação, acima de tudo o sistema deve ser confiável. De acordo com o especialista, tal sistema deve aliar pilares básicos, que são hardware e software de boa qualidade, implantação realizada com pessoal técnico qualificado, que tenha real experiência neste tipo de ambiente.

“Podemos ter o melhor equipamento do mundo, mas se o mesmo não for programado e comissionado com critério, o resultado final pode ser muito ruim”, pontua o CEO, apontando a usabilidade como outro aspecto importante. Para ele, é fundamental que o cliente navegue com facilidade e fluidez nas informações disponibilizadas pelo software. Os relatórios têm que ser facilmente extraíveis do software de supervisão. “Na prática, notamos que existem necessidades específicas para cada tipo de operação, o ponto chave é sempre ter a facilidade de uso como foco principal. Temos diversos tipos de clientes, entre eles os que são extremamente preocupados com eficiência energética e outros mais preocupados em atender seu público específico”, conta o CEO da CCN Automação.

Como dar os primeiros passos? 

Segundo a Honeywell, a receita é: estudar, planejar, executar e operar. Sendo assim, o primeiro passo é entender a real necessidade do usuário final. Após isso, é necessário desenvolver um projeto bem elaborado, respeitando todas as fases, onde enquadram-se as necessidades do usuário para assim, apresentar as soluções, ponderando segurança operacional, custo e qualidade dos produtos.

“Sempre na fase de projeto é importante considerar a expansão das operações, até mesmo uma possível mudança de concepção em relação aos problemas iniciais apresentados, fazendo com que fique fácil toda a automação se adequar às novas solicitações”, pontua Augusto Sanchez, coordenador da equipe de operação de automação de data center da Honeywell. Segundo ele, uma vez que as soluções apresentadas e os projetos são aprovados, é necessária a contratação de serviços de confiança para execução, sendo mão de obra própria ou não. “É imprescindível o acompanhamento da execução, não só da contratada, mas da evolução das empresas envolvidas na rotina”, pontua a Honeywell.

O CEO da CCN Automação afirma que dar os primeiros passos nessa área hoje é simples, pois existem soluções de hardware e software modulares e escaláveis que podem crescer aos poucos e com baixo investimento. “Tudo nasce com um bom projeto e/ou análise das condições atuais da operação”.

Ganhos Operacionais 

Considerada um dos grandes vetores para obter significativos ganhos econômicos no data center. Sejam eles operacionais ou de eficiência energética, hoje com um alto grau de automação é possível reduzir a necessidade de um grande staff de pessoal operacional. Profissionais estes, com viés analítico, que passam a interpretar os dados gerados pelo sistema, com intuito de aumentar cada vez mais a eficiência. Tarefas como checar limites operacionais, monitorarem alarmes, programar liga/desliga de equipamentos, checar falhas e gerar dados históricos passam a ser realizadas sem a intervenção humana. Além disso, plataformas web based permitem que dados do sistema possam ser acessados de qualquer tipo de dispositivo (computadores, celulares, tablets, etc) e de qualquer lugar. Isso tudo com alto grau de segurança.

“A automação permite a introdução de algoritmos inteligentes que podem baixar em muito o consumo dos insumos como eletricidade, água, gás, diesel, etc, otimizando em muito o PUE”, explica o CEO da CCN Automação. De acordo com ele, existem diversas rotinas, principalmente na automação dos sistemas de ar condicionado, que permitem reduções significativas no consumo. “Em termos operacionais os ganhos podem ser também surpreendentes. Já visitamos instalações nos EUA em que não havia um único profissional sequer na sala de controle”, revela Luciano Ribeiro.

Utilização das ferramentas de Automação

De acordo com a Honeywell, cada dia mais os sistemas de automação vêm se tornando menos complicados. Hoje, é possível esperar que as soluções de automação facilitem a operação de um data center à ponto de substituir as ligações de uma operação do (Building Management System) BMS por uma automação que controle manutenções preditivas sem a necessidade de ações humanas constantes no cotidiano de um data center, porém com a possibilidade de gerenciamento de um responsável ou pelo próprio supervisor.

O coordenador da equipe de operação de automação de data center da Honeywell, Augusto Sanchez, afirma que a tendência é que automação esteja cada dia mais enraizada em qualquer projeto de data center. “É impensável hoje esperar o aviso sonoro/visual para um alarme critico em uma UPS ou central de água gelada, ou que todas as informações referentes a consumo tenham que ser coletadas manualmente. A automação e suas ferramentas são recursos mais que essenciais dentro da infraestrutura dos data centers hoje”.

Para a Honeywell, a automação é crucial para redução de custos e para disponibilidade de recursos, “uma vez que dispomos de soluções com redundâncias, abrimos margem para resolução de possíveis sinistros”, conclui.

Publicado em Artigos Tecnicos, Missão Crítica | Marcado com , , , , , , , | Deixe um comentário

Emergency lighting: What’s required, and how it’s designed

Vejam neste interessante artigo norte-americano a existência de um mesmo tipo de dúvida ou complementação sobre o tema iluminação de emergência em edificações comerciais, apesar de uma normatização um pouco mais robusta.

Em ambos os casos, vemos, no entanto, uma questão important relacionada aos seus testes periódicos e até mesmo em relação aos cuidados com a sua “operação periódica e limite de carga de baterias, quando aplicável”.

No Brasil, temos como principais referências a ABNT NBR 10898/2013 e as instruções técnicas de nossos Corpos de Bombeiros, através de uma de suas instruções técnicas (número da IT em SP é 018/2010).

——————————————————————————————————————————

Fonte: Consulting Specifying Engineers
Acesse aqui a matéria em sua fonte.
Emergency lighting is required in all nonresidential buildings. There are numerous versions of building codes and various editions of these building codes in use around the country.
BY TOM DIVINE IS, PE, LEED AP JULY 16, 2018
Figure 2: A wall-mounted battery-powered incandescent egress luminaire was installed in an elevator lobby in a Texas condominium. The test switch and pilot light can be seen at the bottom of the luminaire. Courtesy: Smith Seckman Reid Inc.

Learning objectives

  • Understand where emergency lighting is required in nonresidential buildings, as required by codes and standards.
  • Learn about performance requirements for emergency lighting.
  • Comprehend how emergency lighting is implemented, and which devices should be used.

Emergency lighting is required to illuminate building areas when things go wrong—for example, when the normal electrical supply is interrupted by a utility outage or by a fire or failure within the building. In most facilities, the largest part of emergency illumination lights the pathways and exits that lead out of the building—the egress paths. Its intent is to facilitate evacuation of the facility, particularly in the event of a fire, and to reduce the tendency of occupants to panic under stress, and in the dark.

Because the performance of emergency lighting is directly related to life safety, code officials are notoriously demanding of strict compliance in its design and installation. Differing interpretations about emergency lighting requirements easily can lead to a costly delay of occupancy. A clear understanding of the code requirements for emergency lighting, and a clear understanding of code officials’ views of any issues that admit interpretation, will go a long way toward avoiding expensive and embarrassing surprises late in construction.

The term “emergency lighting” appears frequently in the codes, but it is nowhere directly defined. For the purposes of this article, emergency lighting refers to lighting equipment that is specifically identified as such in one of the codes, with limited exception. Certain lighting that must illuminate under emergency conditions in health care facilities, but is not technically defined as emergency lighting, is addressed separately.

These codes are referenced in this article:

Code-enforcement agencies may adopt these codes, or other codes, and may enforce other editions. Provisions of the various codes sometimes differ regarding similar sets of requirements. Designers should verify the codes and editions in force, and consult authorities having jurisdiction (AHJ) regarding their interpretations of ambiguous or conflicting requirements, before design commences.

Emergency egress lighting, and other emergency lighting

The existential requirements for emergency lighting appear independently in the IBC and in NFPA 101. IBC Section 1008, Means of Egress Illumination, covers lighting requirements for exit routes. It calls for egress lighting for nearly all occupancies, with limited exceptions for agricultural and livestock buildings, dwelling units in institutional occupancies and most residential occupancies, and aisles in assembly occupancies. Egress lighting must remain active whenever the building is occupied (IBC 1008.2).

Under normal conditions, egress lighting must be served by the building’s primary electrical supply. When that supply fails, an emergency power supply must illuminate specific areas, particularly pathways that lead to exits, the exits themselves, and exit discharges. The IBC allows for a number of options for the form of the emergency power system. It may be an onsite generator, a battery-powered system, or a distributed set of batteries attached to individual luminaires.

NFPA 101 provides a similar set of requirements. Emergency lighting is required for egress in all occupancies addressed by the code, with the exception of one- and two-family dwellings and rooming houses. Overall, NFPA 101 describes emergency lighting requirements more specifically than does the IBC.

The IBC generally applies to new construction and renovation projects. Its provisions are not normally enforced retroactively on existing buildings, except where the AHJ determines that public safety is compromised by existing conditions (IBC 102.6). NFPA 101 is enforceable on existing buildings and includes separate requirements for existing and new facilities for each type of occupancy that it addresses.

For emergency lighting, NFPA 101 requirements for new and existing facilities are substantially identical, with a few exceptions. Certain existing worship venues, for example, are permitted to operate without emergency lighting under NFPA 101, while similar new facilities are required to provide it (NFPA 101 12.9.9.2, 13.2.9.3).

Locations

NFPA 101 requires emergency egress lighting in exit accesses, at exits, and at exit discharges. For this purpose, the term “exit access” denotes only designated stairs, corridors, ramps, escalators, and passageways leading to an exit. “Exit discharge” denotes similar designated building components leading to a public way. In a typical design project, these building components are designated by the architect and indicated in the life safety plans. When those plans are not available early in the design process, the designer can get very close to compliant egress lighting by providing emergency lighting in corridors, stairways, at exits, and immediately outside exits.

The IBC specifically requires emergency lighting in certain spaces not used for egress: electrical rooms, fire command centers, fire pump rooms, and generator rooms. No special performance characteristics are specified for these areas. A minimal interpretation would be that these areas require egress illumination. That solution might be suitable for utility spaces, where emergency light would provide wayfinding and be supplemented by portable battery-powered lamps. However, egress-level lighting would certainly be inadequate for a fire command center. A conservative approach for a fire command center might be to provide adequate lighting on each of the normal and emergency power systems, to ensure that the failure of one of those systems won’t leave the center in darkness. Given the IBC’s ambiguity about emergency illumination in these areas, it is worthwhile to verify the AHJ’s interpretation of the code during design.

Exit signs are required along the egress path, at doorways leading to an egress path, and at exits, placed to ensure that an exit sign is visible from no more than 100 ft or the listed viewing distance of the exit sign (IBC 1013.1). This requirement is echoed in NFPA 101 (7.10.1.5.1).

NFPA 110 7.3 requires battery-powered emergency lighting with an average illumination at floor level of 3 fc at generator sets and at generator paralleling gear (NFPA 110 7.3). This requirement also is in NFPA 99.

NFPA 99 calls for battery-powered lighting in locations where deep sedation or general anesthesia is used, with lighting levels sufficient to terminate procedures in the room. These battery lighting units are required to operate for at least 30 minutes (NFPA 99 6.3.2.2.11). The purpose of these battery-powered lights is to ensure that a surgeon wielding a scalpel will not be left in total darkness should normal power fail during a procedure, and to provide minimal lighting for terminating a procedure should the standby lighting also fail.

Technically, these lights are not emergency lights, as there is no emergency electrical system defined for health care facilities. The NEC allows these lighting units to be connected to the critical branch rather than the life safety branch.

Performance

General performance requirements for emergency egress illumination are shown in IBC 1008.3.4 and 1008.3.5 and in NFPA 101 7.9.2. Illumination requirements are identical in these two codes. The egress path must be illuminated at an average level of 1 fc, with a minimum level of 0.1 fc; the maximum-to-minimum illumination level ratio must be 40:1 or less. Emergency lighting must remain illuminated for at least 90 minutes. Illumination levels are allowed to decline to an average of 0.6 fc, with a 0.06-fc minimum, at the end of the 90-minute period.

NFPA 101 7.9.2.2 requires that new emergency lighting power systems be at least Type 10, Class 1.5, Level 1 systems, as defined in NFPA 110. That requirement translates to restoration of power to emergency lighting within 10 seconds after loss of normal power, for a duration of 1.5 hours, for a system of adequate reliability for application where its failure could result in loss of life or serious injury, as described in NFPA 110 4.4.1 and in NFPA 111 4.5.1.

Emergency illumination requirements for stairways are subject to interpretation under NFPA 101. Section 7.9 contains detailed requirements for illumination of the egress path, but it does not contain any specific requirements for stairways. Section 7.8, Illumination of Means of Egress, requires that new stairs be illuminated at 10 fc “during conditions of stair use.” Analysis of requirements in 7.8 shows that its requirements are considerably more stringent than those covering emergency lighting in 7.9.

For example, 7.9 allows for a minimum illumination of 0.1 fc while 7.8 requires a minimum of 1 fc along the egress path. A reasonable interpretation, then, is that Section 7.8 covers requirements under normal conditions while 7.9 covers emergency illumination requirements.

However, some AHJs have enforced the 10-fc rule on emergency lighting in stairways. Facilities using generators for the emergency power source have little difficulty meeting this requirement, as emergency lights operate at full illumination. Facilities relying on unit equipment, though, will require prodigious batteries or numerous lighting units to maintain this illumination level.

Testing

Testing requirements for emergency lighting appear in NFPA 101 7.9.3. Lamps and power sources must be periodically tested to verify that they continue to function in accordance with code requirements. All emergency lighting systems, regardless of their power source, must be tested monthly for a period of at least 30 seconds. For unit equipment, monthly testing typically consists of a short test of the battery and lamp, implemented by a test switch on the luminaire.

For storage-battery and generator systems, testing is typically accomplished by de-energizing the normal power source serving emergency lighting and observing that the lamps illuminate. Generator systems must be tested monthly by initiation at a transfer switch and run under load for at least 30 minutes (NFPA 110 8.4.2). Emergency lighting tests are normally performed in conjunction with monthly standby power system tests.

For coordination with emergency lighting tests, it would be convenient to initiate monthly generator tests from the emergency system’s transfer switch; however, NFPA 110 requires that the transfer switch initiating the test be rotated among switches from one month to another (8.4.3.1). Where multiple transfer switches exist, the normal power supply to emergency lighting equipment must be intentionally de-energized to observe its operation from the emergency supply.

Storage-battery systems are required to be tested in accordance with their manufacturer’s recommendations, rather than in accordance with a code-mandated schedule (NFPA 111 8.4.1). For these systems, it may not be possible to coordinate periodic battery system tests with tests of emergency lighting. Nevertheless, emergency lighting must be tested monthly.

Storage-battery systems and unit equipment must be tested annually for 90 minutes.

Electrical system

The installation requirements for power systems serving emergency loads, including emergency lighting, appear in NEC Article 700, Emergency Systems. The power sources permitted under the IBC-storage-battery systems, onsite generators, and unit equipment-also are permitted under Article 700, along with fuel cell systems per 700.12(A), (B), (C) and (D). A separate utility service may serve as the alternate source, where its reliability is acceptable to the AHJ as per 700.12(D). The AHJ should be consulted in advance of construction where a fuel cell system or alternative service is contemplated as the emergency supply.

The electrical supply must provide power within 10 seconds of the loss of normal power (700.12), echoing the response requirements of NFPA 101 and the IBC. Surge-protection devices are required on all emergency system switchboards and panelboards (700.8).

Article 700 requires strict separation of the emergency system wiring from all other wiring, beginning at a separate vertical switchboard section or disconnect switch connected to the emergency supply (700.10(B)(5)(c)). Lighting and power circuits that serve anything other than required emergency loads may not be served from the emergency system (700.15). If standby power is required for other purposes, it must be served from a separate vertical section, panelboard, or disconnect switch, through a separate transfer switch. The system capacity must be adequate to serve all the loads connected to the system simultaneously, or a load-shed system must be provided to maintain service to emergency loads by selectively disconnecting other loads (700.4(B)).

Overcurrent devices on the emergency power system must be selectively coordinated with all upstream devices. The definition of “selective coordination” in the NEC is quite strict, requiring coordination for the “full range” of overcurrent settings and device operating times. Achieving selective coordination with circuit breakers will require careful device selection; otherwise, fuses must be used.

Emergency system feeders and generator control circuits must be protected from fire by one of several methods. Equipment serving emergency feeders must be protected by either an automatic fire-suppression system or a 2-hour-rated enclosure.

Special occupancies: health care

NFPA 99 and NEC Article 517 modify certain requirements for emergency systems in health care facilities. Those documents do not define an emergency electrical system; instead, they define an essential electrical system consisting of a life safety branch, critical branch, and equipment branch. Emergency egress lighting is served by the life safety branch (517.33(A)) and other lighting that must remain operative to provide patient care and support necessary for hospital functions served by the critical branch (517.34(A)). The life safety branch must comply with the requirements of NEC Article 700 for emergency systems, except where specifically modified in Article 517 (517.26).

Article 517 abrogates the standby system capacity requirement of Article 700, allowing the system to be sized for the maximum demand that the load is likely to produce (517.30(D)). Selective coordination requirements are limited to faults that persist for more than 0.1 second, as per 517.30(G) as well as NFPA 99 (6.4.2.1.2.1).

The applicability of fire-rating requirements for health care facilities is open to interpretation. NFPA 99 specifically exempts the life safety branch from compliance with the fire-rating requirements of Article 700.10(D) under 6.4.2.2.1.6 and 6.5.2.2.1.5. However, no such exemption appears in NEC Article 517. Fire ratings can be expensive and difficult to apply after construction, so the wise course is to get clarity from the AHJ about whether fire-rating requirements will be enforced during design.

Hardware: internally illuminated exit signs

NFPA 101 and the IBC permit the use of internally illuminated exit signs, provided that they are listed for the purpose and approved by the AHJ. The two most common technologies used in internally illuminated signs are photoluminescence and radioluminescence. Both of these technologies provide the significant advantages of obviating annual battery-duration testing and periodic battery replacement, and both have disadvantages.

Photoluminescent materials absorb energy from incident light and slowly release that energy as visible light. Energy is stored in the electron clouds surrounding the individual atoms of the photoluminescent material, in that incident light knocks electrons into elevated energy states. As those electrons return to lower-energy states, they release their stored energy as visible light.

On the macroscopic scale, these materials behave as light batteries, charged by incident light and discharged into darker environments. These materials are applied as the letters in exit signs, where they glow to mark the egress path in low illumination.

Photoluminescent exit signs have long usable life and require little maintenance. Units are typically warranted for 15 to 25 years. The primary maintenance method is to clean the face of the sign, as obscuration of the face will directly reduce the light output, which will reduce the charging effectiveness.

Photoluminescent exit signs must be continuously illuminated to a minimum level under normal conditions—typically 5 fcs—to remain charged. As energy codes become more restrictive, requiring occupant sensing, daylight controls, and control of egress lighting, the application of photoluminescent lighting becomes more challenging.

Photoluminescent materials are generally charged by light in the upper end of the visible light spectrum and the low end of the ultraviolet region. They charge well under fluorescent and metal-halide lamps, which produce a fair amount of blue and ultraviolet light. LEDs produce substantially less high-energy light and are less effective at charging photoluminescent exit signs than older lighting technologies. Photoluminescent signs to be charged by LED luminaires must be marked for compatibility with LED illumination (NFPA 101 7.10.7.2).

Radioluminescent exit signs contain a small amount of radioactive material-typically tritium, a radioactive isotope of hydrogen. Tritium decays by emitting high-speed electrons that impinge on a specially selected phosphor, which glows visibly in response. Tritium, a gas, is typically enclosed in a phosphor-coated glass tube, and the tube is encased in a block of clear plastic to minimize the likelihood that the tritium will be released into the environment. The usable life of radioluminescent exit signs is limited by tritium decay and by degradation of the phosphor. The half-life of tritium is about 12 years.

Use of radioluminescent exit signs triggers additional compliance and record-keeping requirements. The presence of radioactive materials in these signs necessitates proper disposal, with attendant costs and records. With its low level of radioactivity and long half-life, tritium illumination is not believed to pose a significant health hazard.

The illumination level of self-illuminated exit signs is not specified in the codes. Instead, these signs are listed and labeled with a maximum viewing distance. Signs must be placed to ensure that an exit sign is visible within the listed viewing distance at all points on the egress path.

Hardware: unit equipment

“Unit equipment” is an electrical term used to describe battery-powered lighting units. It’s described in NEC 700.12(F)(1) and 701.12(F)(1) as consisting of a rechargeable battery, a battery charger, provisions for connecting attached or remote lamps, and means of powering lamps from the battery when the normal supply is unavailable. The term covers both illumination fixtures and exit signs. Unit equipment may illuminate with the facility’s normal lighting and switch to battery power under emergency conditions, or it may operate only when the normal supply fails.

Installation and performance requirements are described in 700.12(F)(2) and again in 701.12(F)(2). In particular, unit equipment must be powered from the same lighting circuit that supplies normal lighting in its area. Battery-powered lighting can’t distinguish between the failure of a branch circuit and general failure of the normal supply. Under circuit-failure conditions, it will illuminate until its batteries fail. Normal lighting attached to the same circuit will immediately extinguish. The purpose of that requirement is to ensure that the failure of the circuit serving emergency lighting is obvious, and maybe even inconvenient, to the building occupants.

Unit equipment must be permanently installed while specifically permitting flexible cord-and-plug connections of 3 ft or less. Cord-and-plug installations should be designed with care, if at all, because NEC 400.12 specifically prohibits flexible cords that penetrate ceilings or floors or are concealed above ceilings.

Performance requirements for unit equipment, as described in NEC 700.12, are identical to those described for emergency lighting in the IBC and NFPA 101: At least 60% of initial illumination must be maintained for 90 minutes. NEC 700 includes an additional requirement that the battery voltage remains at no less than 87.5% of its nominal voltage during the entire 90-minute period. Presumably, the maximum-discharge voltage requirement is intended to ensure that batteries are not damaged by repeated deep-discharge cycles during annual exposure.


Tom Divine is, PE, LEED AP
Author Bio: Tom Divine is a senior electrical engineer and project manager at  Smith Seckman Reid Inc.  He is a member of the  Consulting-Specifying Engineer editorial advisory board.
Publicado em Artigos Tecnicos, Leis, Normas Técnicas | Marcado com , , , , , , , | Deixe um comentário