Precisamos de mais engenheiros!

Fonte: O Estado de São Paulo

Divulgação: Engenharia Compartilhada

Leia o artigo aqui, diretamente no site da Engenharia Compartilhada.

Vemos setores em plena expansão, crescendo a taxas que parecem fantasia e sofrendo muito para conseguir preencher suas vagas de trabalho

fftkq3gj

Foto: Pixabay

Temos uma bomba relógio se formando debaixo de nossos pés. Por um lado, vemos uma economia que ainda não encontrou seu caminho de mais crescimento, baseada em atividades de pouco valor agregado e com taxas de desemprego por volta dos 12%.
Por outro, vemos setores em plena expansão, crescendo a taxas que parecem fantasia e sofrendo muito para conseguir preencher suas vagas de trabalho com profissionais de áreas como engenharia e computação. Só no setor da tecnologia da informação e comunicação, as estimativas indicam que a demanda por profissionais, entre 2018 e 2024, será de mais de 400 mil vagas. E o pior, não estamos conseguindo formar estes profissionais.
Para efeito de comparação, em 2018 a China formou mais de 8 milhões de pessoas sendo que mais da metade delas nas áreas de ciências, tecnologia, engenharia e matemática. Estes profissionais são os mais procurados pelas indústrias de alto crescimento e fazem parte de uma importante engrenagem de prosperidade para a região. Aqui no Brasil temos colocado, apenas, cerca de 100 mil engenheiros no mercado de trabalho a cada ano.
Como temos discutido aqui em vários de nossos papos, tecnologia tem sido uma das principais forças de transformação da sociedade e da economia no mundo todo. Estas mudanças não dão sinais de que pararão tão cedo. Ainda temos muita pessoas – quase metade da população mundial – para serem conectadas à internet e a grande maioria das atividades ainda não passaram por sua transformação digital. Esta mudança está em curso e com ela a demanda por profissionais com as qualificações adequadas só aumentará.
Estimular a formação destes profissionais passa a ser uma questão estratégica. A grande questão é que não estamos fazendo um bom trabalho em estimular a formação de profissionais nestas áreas.
A quantidade de profissionais sendo preparados é muito menor do que a dos países desenvolvidos e de emergentes como China e Índia e isto vai fazer com que o Brasil fique ainda menos competitivo.
Não menos importante, no atual contexto da demanda por estes profissionais, formar um estudante numa destas áreas significa colocá-lo em condições de encontrar um emprego que pague bem e que pode ter um impacto gigante em sua vida. E isto muda o jogo! Não só estamos falando de mais empregos, mas também de empregos mais qualificados.
Já passou da hora de fazermos algo para tentar desarmar esta bomba. Precisamos, já, de mais engenheiros, programadores, cientistas e matemáticos!
Publicado em Artigos Diversos, Mercado de Trabalho | Marcado com , , , | Deixe um comentário

Parceria Energética Brasil-Alemanha lança plataforma online

Observamos recentemente mais um passo dado entre as duas nações, rumo ao estacebecimento de uma plataforma online que traz informações sobre o âmbito da cooperação entre os dois países.

Na realidade, a Alemanha já vem há algum tempo assumindo uma posição destacada dentre as nações mais desenvolvidas, no que se refere aos investimentos, incentivos e na coordenação de projetos voltados à eficiência energética e sustentabilidade.

Existem de fato programas e incentivos, e……..resultados.

Ao contrário, o Brasil ainda “engatinha” neste quesito, com investimentos limitados em pesquisas, principalmente no setor acadêmico, e com propostas de incentivo ainda nem sempre tão atrativas para o setor privado que atua na área de tecnologia.

Há pouco mais de 40 anos, ouvi sobre sermos o “país do futuro” em uma das aulas de ciência na escola, o que nunca deixou de ser uma verdade. No entanto, como em qualquer situação em nossas vidas pessoais ou profissionais, o futuro requer o estabelecimento de metas (expectativas), de um planejamento e de um processo de “construção ou implantação”, ainda que em etapas.

Temos certamente a capacidade técnica para tal, mas dependemos de incentivos do governo federal e a participação da iniciativa privada, criando condições para os ambientes de pesquisa. Ainda em relação ao governo, necessitamos de incentivos fiscais que atraiam investimentos e movimentem os setores responsáveis à buscar e implantar novas soluções e conceitos.

No fundo, temos de olhar e almejar este futuro há décadas prometido…

Acho importante esta parceria divulgada, mas espero, sinceramente, que o principal fruto seja a força motriz que promoverá o desencadeamento deste planejamento e a implementação de ações concretas.

Para aqueles que desejarem acessar mais informações sobre a plataforma, segue abaixo um trecho da matéria e o link para o veículo original.

Parceria Energética Brasil-Alemanha lança plataforma online

Fonte: Canal Energia

No intuito de apoiar a parceria criada em 2008 e relançada em 2017 entre o Ministério Federal da Economia e Energia da República Federal da Alemanha (BMWi) e o Ministério de Minas e Energia (MME), a Deutsche Gesellschaft für Internationale Zusammenarbeit (Giz) apresentou oficialmente nesta quinta-feira, 4 de julho, durante o evento Energy Day 2019, realizado no prédio da Eletrobras, no Rio de Janeiro, uma plataforma online que traz informações sobre a cooperação entre Brasil e Alemanha no âmbito do desenvolvimento e implementação de uma estratégia energética nacional voltada para as energias renováveis e para a sustentabilidade dos futuros sistemas de energia, com a divulgação de tudo o que já foi feito e planejado entre as partes.

Segundo Carmen Langner, Coordenadora do projeto e de Energias Renováveis e Eficiência Energética da Giz, o objetivo é….

Acesse o artigo diretamente em seu site de origem, clicando aqui ou colando o link abaixo em seu navegador.

http://www.procelinfo.com.br/main.asp?ViewID=%7BF5EAADD6%2DCCB0%2D4E29%2DA0C4%2D482D3D66BB65%7D&params=itemID=%7B81C008B5%2DDBD7%2D44A5%2DB6CF%2D63AD0789450E%7D;&UIPartUID=%7BD90F22DB%2D05D4%2D4644%2DA8F2%2DFAD4803C8898%7D

Publicado em Brasil, Comentarios do Bloggeiro, Eficiência Energética, Sustentabilidade | Marcado com , , , , , , | Deixe um comentário

Electrical systems, from design to commissioning

Fonte (From): Consulting-Specifying Engineer

Por (By): DANIEL MENDEZ AND RICK H. REYBURN, PE, NV5, LAS VEGAS

Click here to read this article directly from the original source.

Learn how to define the procedures of electrical schematic design, design development, construction documents, bidding, and construction administration including electrical commissioning.

CSE1903_MAG_PP_FCXELEC_02-1024x574

Figure 2: A design development (DD) phase drawing shows an imaginary guest room and a more detailed single-line diagram. Courtesy: NV5

Learning objectives

  • Understand the expectation of drawing information at each step of electrical design.
  • Learn about the procedures of how to obtain this design information.
  • Know how to implement the information obtained to complete a building project.

 

The primary goal of any building electrical design is to provide a safe, energy-efficient system that meets the client’s needs and is in compliance with codes. Life safety and preservation of property are two of the most important factors in the design of the electrical system.

NFPA 70: National Electrical Code (NEC), the International Building Code (IBC), the International Energy Conservation Code (IECC), the International Mechanical Code (IMC), the International Plumbing Code (IPC), the International Fire Code (IFC),the International Swimming Pool and Spa Code (ISPSC), the Building Industry Consulting Service International (BICSI), and other various codes provide rules and regulations to meet the minimum requirements to protect life and property. The electrical designer must meet these requirements for it to be a successful, code-compliant design.

System requirements for large facilities 

The following are systems and equipment that typically are provided to satisfy functional requirements within large facilities:

  • Building electrical service(s).
  • Robust power distribution systems (NEC Article 700: Emergency, NEC Article 701: Legally Required Standby, NEC Article 702: Optional Standby).
  • Lighting: interior and exterior (general, decorative, and task).
  • Communication systems: telephone, data, TV.
  • Fire alarm systems.
  • Smoke-control systems.
  • Transportation: elevators, escalators, moving walkways.
  • Space conditioning and control: HVAC, building automation systems (BAS).
  • Plumbing: hot- and cold-water systems.
  • Security: electronic access systems, closed-circuit surveillance TV.
  • Refrigeration equipment for kitchens.
  • Food handling, dining facilities, and food preparation facilities.
  • Lightning protection.
  • Specialized audio/video systems for entertainment.

The following typically is provided by an architect seeking a fee to provide electrical engineering for permit and construction. Our example will include the following parameters:

  • A high-rise hotel of 40 stories and 3,000 guestrooms.
  • Guest rooms will consist of three types: a single-bay 450-sq-ft unit, a two-bay 900-sq-ft unit, and a three-bay 1,350-sq-ft suite.
  • Three interior stairwells.
  • An elevator bank of eight elevators, four accessing the first 30 floors and four high-speed accessing the upper 10 floors.
  • A low-rise component containing a 100,000-sq-ft casino with 2,500 slot machines and 30 table games, such as blackjack, craps, etc.
  • A convention facility of approximately 75,000 sq ft.
  • A prefunction area of approximately 20,000 sq ft.
  • A main kitchen of approximately 7,500 sq ft.
  • A buffet of approximately 15,000 sq ft.
  • A food court for six food vendors, each occupying approximately 4,000 sq ft.
  • An open parking garage of approximately 6 stories and 1,500 spaces.
  • Two 20,000-sq-ft restaurants with 6,000-sq-ft kitchens each.
  • A small showroom of approximately 35,000 sq ft and 800 seats for an evening show of musical variety.
  • A center sports bar with about 40 seats, approximately 2,500 sq ft.
  • A sports book of 2,500 sq ft.
  • Back-of-house offices, repair shops, electrical/mechanical rooms, central plant, corridors, employee bathrooms, etc. of approximately 400,000 sq ft. These are spaces the public typically never sees.
  • A porte-cochere of 3,000 sq ft.
  • A retail concourse of approximately 60,000 sq ft including the concourse. This has approximately 15 shops.

Schematic design 

The schematic design (SD) phase sets up the general concept for the electrical design, and the expectations of it may vary widely from project to project based on factors such as construction estimates, deadlines, construction phases, project size, etc. As a first step, preliminary architectural drawings should be provided to the engineer to begin the design process and understand the complexity of the project. A list of questions should be generated based on the preliminary information to further define the scope.

The list of questions should be clarified during a kickoff meeting with the owner, architect, civil engineer, mechanical, electrical, plumbing, fire protection (MEP/FP) engineers, and other design professionals. In addition, during this meeting, the team should review preliminary floor plans, owner design standards/requirements, the project schedule, and expectations for each of the deliverables, phases, and packages in which the project will be separated.

A typical large facility may include a tower package, a podium package, and a parking garage package. These separate packages allow for associated construction to begin before later packages are completed. After attending the kickoff meeting, the electrical engineer should have a better understanding of the project scope and owner’s design standards. This should allow the engineer to develop the preliminary scope of work and develop the basis of design (BOD) for the project.

CSE1903_MAG_PP_FCXELEC_01-500x280

Figure 1: A preliminary block single-line diagram showcases the sample project. Courtesy: NV5

The first step for the electrical team is to set up the electrical drawings for the SD package based on the preliminary architectural drawings received. Electrical drawings should include an overall site plan and overall floor plans for the tower, podium, and parking garage packages, which will be used for the coordination of all the major electrical rooms and equipment distribution.

Next, the team will spend some time reviewing the owner’s design standards to understand the power requirements for different areas of the building, and then research applicable codes including the NEC and energy and local codes to determine the systems’ needs based on building areas’ occupancy types.

Planning for the design of an electrical system for facilities of this size should begin with the determination and study of the size and nature of the total load to be served. This means load estimates on watts-per-square-foot basis and the estimation of the amount of other utilization loads and their concentrations throughout the building. Understanding of the major loads/equipment power requirements and their location in the building is essential to the selection of the recommended distribution systems.

Once the list of SD coordination questions has been responded to and most of the building occupancy types have been identified on the plans, the task for the electrical engineer is to prepare a rough estimate of electrical loads based on NEC Article 220. Consider the estimated connected loads with demand factors, diversity factors, and historical data. Our experience on large hotels is a 25% loading of transformers sized per the NEC and 35% loading of podium transformers. Service entrance equipment is typically estimated at a load of 35% to 45%. The preliminary generator load also should be estimated.

Once preliminary loads have been completed and utility service and switchgear ampacities have been estimated, a preliminary electrical distribution system should be developed. The single-line diagram should include the main switchgear, step-down transformers from medium-voltage system to 480/277 V distribution, generators, automatic transfer switches (ATS), uninterruptable power supply (UPS), optional standby systems, 480V/277 V distribution boards, 480/277 V to 208/120 V transformers, panelboards, feeders, preliminary connections to chillers, air handling units, fire pumps, hydronic heat pumps, cooling towers, elevators, etc.

The electrical distribution system should include a topology, such as branches of power (mechanical, life safety, general purpose, lighting, etc.), and careful planning for future increases in electrical use. Conductors are not typically sized at this time for feeders because it is very preliminary. Submit the preliminary site plan with the preferred service point(s), preliminary single-line diagram, and estimated loads to the dry utility coordinator or directly to the serving utility for the preliminary work of serving the property. It is recommended to request available fault-current values form the serving utility at this time.

The electrical engineer should provide the architect with preliminary electrical room layouts to coordinate appropriate locations of major electrical equipment throughout the building. The electrical engineer is responsible for coordinating the space requirements for a proper electrical installation per NEC Article 110.26 requirements. In addition, the requested room spaces to house electrical equipment also should be able to accommodate the addition of future equipment. Equipment weights and sizes are estimated at this phase to assist the architect, structural engineer, and mechanical engineer with egress, structural coordination, and cooling needs.

Design development 

The design development (DD) phase focuses and refines the electrical design. The architect should provide a further developed architectural set of drawings for the different areas of the facility. By now, the architectural drawings should include enlarged plans, preliminary reflected ceiling plans for back-of-house areas, kitchen areas, offices, restrooms, employee break rooms, etc. The architect should send its DD set to all the design professionals to continue developing their design.

It is during this early period that the electrical designer should emphasize the need for duct bank routing, structural reinforcement for heavy equipment, electrical rooms’ wall ratings (if required), clearances around electrical equipment, egress doors for electrical rooms, transformers, busways, cable trays, panel boards and switchboards, and other items that may be required. It is much more difficult to obtain such things once the design proceeds to construction documentation (CD).

The electrical team should provide DD coordination questions to the architect and other consultants based on the owner’s expectation for the electrical design at this phase and the progress of other design professionals’ needs of electrical coordination, such as a kitchen consultant.

The goal for the electrical team in this phase of the project is to coordinate and lay out most of the back-of-house equipment, lighting, receptacles, and mechanical, plumbing, and power requirements from equipment specified by other consultants. Little, if any, branch circuitry is provided at this phase.

Depending on the order in which the information is received from other consultants provide, the team should plan on which areas to focus first. The electrical drawings included is typically as follow:

  • Electrical cover sheet.
  • Lighting fixture schedule(s).
  • Site plan(s).
  • Overall plan(s).
  • Power plan(s).
  • Lighting plan(s).
  • Enlarged electrical room plan(s).
  • Enlarged food service plan(s).
  • Enlarged specialty lighting plan(s).
  • Enlarged guest room unit plan(s).
  • Single-line diagrams.
  • Panels and dimmer schedules.

Electrical cover sheetThis drawing typically includes the electrical drawings sheet index, abbreviations, and electrical symbol legend.

Lighting fixture scheduleIncorporate preliminary front-of-house lighting specifications from the lighting consultant, if available. A back-of-house luminaire schedule will be created because these areas typically are under the responsibility of the electrical engineer.

Site planThe electrical site plan should include the lighting layout only, based on the lighting consultant’s design supplemented with back-of-house lighting of areas not accessible to the public. For instance, parking lot pole lights, walkways, and landscape lighting typically are provided by the lighting consultant. Building-mounted signage, site signage, and any of the site water features’ power requirements also should be identified.

A dry utility consultant should assist the civil engineer, the local electric utility, and owner’s representative with the site utility requirements. Utility switchgear and/or utility-furnished transformer locations should be indicated on the electrical site plan. Understanding the proposed routing, design, construction, etc. on site for the electrical utility, is important to understand at this phase.

CSE1903_MAG_PP_FCXELEC_02-500x280

Figure 2: A design development (DD) phase drawing shows an imaginary guest room and a more detailed single-line diagram. Courtesy: NV5

Overall plansOverall plans should include the electrical distribution equipment layout at each building level including main switchgear, generators, distribution boards, UPS equipment, panel boards, ATS, etc. Identify walls to the architect that should be 6 in. thick for recessed flush panels.

Power plansProvide receptacle outlet layouts for back-of-house areas. Consider providing convenience receptacle outlets along the guest room tower corridors at possibly 50 feet on center, determine the estimated quantity of 20-amp branch circuits needed in the typical guest room, typically three for a standard guest room. For front-of-house areas, place convenience receptacles as required per code and additional ones as indicated by the interior designer, architect, and owner. Review all architectural, interior design, elevations, typical rooms, and other consultant drawings for outlet locations required, and capture them in this drawing set.

Coordinate spa, pool, internally illuminated signage, security/surveillance, telephone/data, and audio/video equipment power requirements with the design consultants in order to develop and design the supporting electrical infrastructure.

Incorporate mechanical and plumbing equipment layouts per the design consultants’ requirements. Provide rooftop weatherproof and weather-resistant receptacles within 25 ft of mechanical equipment. Coordinate the elevator machine room, pit, shaft, and possibly top-of-elevator lights, switches, and receptacle requirements.

Advise the architect and owner which equipment loads are required to be on emergency (NEC 700) or legally required standby (NEC 701) power per code. Confirm with the architect and owner which equipment loads will be preferred to be connected to optional standby (NEC 702) or UPS power to properly meet the owner’s needs. Provide the preliminary emergency/legally required/optional standby power systems design and include generator sizing and selection, the transfer system, preliminary load prioritization, load-shed criteria, and segregated emergency/legally required and optional standby distribution systems.

Generator fuel, storage, and quantities also should be reviewed at this time. Any and all outlets indicated in architectural drawings need to be captured on electrical power plans. A thorough review of all architectural floor plans, elevations, and typical rooms is required.

Lighting plansPreliminary lighting-load allowance per area calculations for the back of house and front of house should be performed based on the applicable energy codes. The electrical engineer should notify the architect and lighting consultant of the lighting allowances, so they can design their lighting layouts to meet the energy requirements for each area and to understand control requirements for the applicable codes. There is a high level of coordination needed for architectural, interior design, mechanical design, and lighting plans in electrical drawings.

Preliminary back-of-house and front-of-house lighting layouts for normal and emergency lighting should be included. Back-of-house lighting cutsheets should be provided to the architect for review and approval. The electrical design team should provide rough photometric calculations to indicate preliminary compliance with emergency lighting footcandle requirements along the path of egress (1 fc is average). Emergency lighting should be considered in areas such as electrical rooms, stairways, information technology rooms, etc. Exit signage should be placed on the drawings and coordinated with the other design professionals’ egress plans. Exterior emergency lighting above discharge doors should also be included on the drawings. Finally, lighting controls for back-of-house areas should be added to the plans based on applicable codes (NEC and energy).

Enlarged electrical room plansCreate enlarged 0.25- to 1-in.-scale plans for all electrical rooms. Show equipment clearances and electrical room egress door requirements per NEC Article 110.26.

Enlarged food service plansCreate enlarged 0.25- to 1-in.-scale plans for food service areas, which are sometimes handled by a separate consultant. Food-and-beverage electrical systems are based on the food service consultant’s bulk loads and equipment locations. Place ground-fault circuit interrupter (GFCI) receptacle outlets per NEC 210.8(B)(2) within kitchen areas for food service power connection.

Enlarged guest room unit plansDevelop the design for the typical enlarged (typically 0.25-  to 1-in.-scale) guest room units based on information provided by the architect/interior designer. Receptacle layouts shall comply with NEC 210.8(A), 210.12(C), and 210.60 requirements.

Singleline diagramsAt this point, the single-line diagram is expanding as electrical distribution systems are being added because different areas in the building are being further developed. Feeders or empty conduits stubbed into all tenant spaces should be incorporated. Update the single-line diagrams to include equipment ratings for main switchgear, generators, ATS, distribution boards, transformers, motor control centers, panel boards, etc.

The single-line diagrams should then be prepared in conformity with the serving utility’s requirements. Send updated single-lines, estimated load calculations, and the site plan, including the recommended service location, to the serving utility for their review. Determine owner- and utility-furnished items. If fault-current values have been received from the serving utility, short-circuit calculations can begin in this phase of design.

Panels and dimmer schedulesCreate the preliminary panel and dimmer schedules.

Book specificationsTypically for these types of projects, MasterFormat Division 26 specifications will be provided. Sections should be included based on project requirements.

Along with the DD package submitted to the architect, the electrical team should send an updated coordination list requesting information required from the owner, architect, and other consultants to proceed to the next phase of the design. This is the time to review the electrical drawings with the owner and owner’s staff to coordinate specific needs. By reviewing with key personnel, changes in the construction document (CD) phase are avoided and the owner is a clear part of the design process.

Construction documentation 

The CD phase fills in the details of the electrical design. The architect should provide finalized architectural drawings for all the different areas of the project along with any comments from the submitted electrical DD package. Architectural drawings should include all floor plans, enlarged plans, reflected ceiling plans, details, elevations, etc. for all areas of the building. The architect should distribute its construction documents to all the design professionals involved in the project to complete their design.

The design from the food service, interiors, low-voltage, lighting, vertical transportation, fire sprinkler, landscape, mechanical, plumbing, pool, structural, or other specialties should be finalized during this phase of the project. The electrical team typically is at the end of the line waiting on all other consultants’ information to finalize the electrical design. For this reason, it is important to request final information in a reasonable amount of time before the permit drawing set is scheduled to be issued.

To ensure everything has been provided as requested, it is during this phase that the designer should review the requested electrical spaces and clearances for electrical rooms, panel boards, motor control centers, and switchboards.

Plan-checking by the local building authority is an essential part of the permitting process. Finally, upon satisfaction of the plan reviewers, the CD set is ready to be issued to construct.

Electrical cover sheet—The electrical design team should verify the electrical symbols used in the electrical drawing set are incorporated into the electrical symbol legend. The sheet index should include all the electrical drawings.

Lighting fixture schedule—The back-of-house and front-of-house, site, façade, and guest rooms lighting-fixture schedules should include wattage, voltage, and driver type.

Energycompliance forms—Include energy-compliance form calculations to demonstrate compliance with the applicable energy codes.

Site plan—The site lighting should be circuited, and lighting controls defined. Building-mounted signage, site signage, and any site water features’ power connections and controls should be finalized.

Coordinate the location for generator(s), utility switchgear, and/or utility-furnished transformers and indicate them on the site plan. Electric vehicle charging stations should be shown if required by the codes or owner needs.

Overall plans—Verify that the electrical distribution equipment being used at each level of the building is included and clearly identified.

Power plans—Include circuiting for all devices and equipment indicated on the other design professional drawings. Clearly define the power system it is connected to (i.e., emergency, legally required standby, optional standby, UPS, etc.).

Lighting plans—Complete the back-of-house and front-of-house lighting circuiting, controls, and exit signs.

Enlarged electrical room plans—Finalize enlarged 0.25- to 1-in.-scale plans for all electrical rooms.

Enlarged food service plans—Complete the enlarged plans for food service areas by indicating all circuiting. Kitchen demand loads should be applied per NEC 220.56 and Table 220.56.

Enlarged guestroom unit plans—Finalize the circuiting and lighting/controls design for the typical enlarged guest room units based on information provided by architect/interior designer and other consultants. Consider the demands allowed by NEC Table 220.

Single-line diagramsFinalize the single-line diagrams based on final design modifications and updated load analysis. Include feeder schedules, notes, load calculations (based on the design’s connected load), the equipment schedule indicating equipment specs, etc. Provide selective coordination per NEC Articles 700.32 and 701.27. Provide fault-current analysis and voltage-drop analysis.

Panels and dimmer schedulesFinalize panel boards and dimmer schedules to include the ampere-interrupting-capacity rating, main lug only/main overcurrent protection, branch circuit breaker ratings, load volt-amps (VA), and load description.

Book specificationsUpdate MasterFormat Division 26 book specifications based on final design modifications. Review other sections of specifications, such as fire alarm, low-voltage, mechanical, and plumbing, to make sure coordination is achieved and the direction is clear and concise in compliance with code.

Bidding and construction administration 

Once a completed set of construction documents has been issued and approved by the owner, it is ready for bid. The owner should submit the drawings to interested contractors, who will then bid the cost to construct the job.

Perform site observations during the construction phase to survey the status of the systems’ installations. Review the contractor material submittals and shop drawings. Respond to requests for information and field-coordination issues.

CSE1903_MAG_PP_FCXELEC_03-500x280

Figure 3: A construction document (CD) phase single-line diagram highlights a part of the previous single-line and the guest-room CD level circuited. Courtesy: NV5

Commissioning 

Electrical commissioning (Cx) is an important step of the construction and design teams, and for the owner to understand, including what equipment will be reviewed and how it will be reviewed. This can be broken into several steps:

  1. Visual observation of all electrical equipment including components within electrical equipment, such as busing and cables, to confirm the equipment provided agrees with the drawings and specifications as produced by the engineer of record. This includes making sure that proper listing and labeling is completed and that the equipment provided is in compliance with its listing. Also, confirmation that the equipment being furnished and installed is in compliance with the specifications and manufacturers requirements.
  2. Functional testing, such as ground-resistance measurements, relay settings on protection devices, ground-fault protection testing, and GFCI/arc-fault circuit-interrupter testing, is an observation of the contractor operating the equipment in question to confirm its operation is as intended by the design documents and in conformance with codes. Also, load bank testing of generators to verify full functionality, paralleling equipment testing for a variety of agreed-upon scenarios, and fire pump starting as well as fire-smoke control interfacing to electrical systems.
  3. Preventive maintenance base-point measurements for infrared scans of all equipment terminations, and ampacity and voltage readings for all equipment. Depending on the Cx scope, Cx organizations represented by the commission agent (CxA), and possibly U.S. Green Building Council LEED certification, certain requirements are outlined for documentation due to the owner. Also, review of operations and maintenance materials, a process for resolving issues pointed out by the CxA, etc.
Publicado em Artigos Tecnicos | Marcado com , , , , , , , , | Deixe um comentário

Desarticulação é principal entrave para sucesso da eficiência energética no Brasil

Fonte: Procel Info

Acesse aqui a matéria em sua fonte.

O que as instituições públicas e as associações de classe podem fazer para que as metas previstas de economia de energia e redução de demanda se realizem e envolvam agentes privados ainda pouco empenhados em investir em eficiência energética são algumas das questões abordadas em um estudo pioneiro liderado pelo Procobre (Instituto Brasileiro do Cobre) e pelo Excen (Centro de Excelência em Eficiência Energética) da Unifei (Universidade Federal de Itajubá), com o apoio do MME (Ministério das Minas e Energia).

A pesquisa revela não só as iniciativas e possibilidades de cooperação e sinergia em eficiência energética conduzidas por diferentes instituições no país – atualmente, de cerca de 80 ações – mas também a oportunidade de uma maior articulação dos organismos na hora de desenvolver atividades de consumo consciente do insumo energético, o que é tido como principal obstáculo para que a eficiência energética entre na agenda do setor produtivo.

Para chegar a essa conclusão, os pesquisadores do Excen, professores Jamil Haddad e Luiz Augusto Horta Nogueira, contam que foi necessário elaborar uma lista das atividades em eficiência energética associadas a uma ou mais instituições pesquisadas, relacionando essas iniciativas quanto aos usos finais, à existência de atividades transversais de treinamento ou capacitação, gestão energética e às ações de marketing, entre outros parâmetros considerados.

“Nos últimos anos, construímos uma boa estrutura de ações e programas de eficiência energética e definimos alguns instrumentos legais e regulatórios – etiquetagem, programas nacionais de conservação como o Procel, o PEE (Programa de Eficiência Energética) das distribuidoras, programa de índices mínimos de eficiência energética, Plano Decenal de Expansão de Energia 2026, Plano Nacional de Energia 2030 e o Plano Nacional de Energia 2050 –, mas o país ainda é carente – entre outras ações – de uma base de dados compartilhada, alimentada sistematicamente com informações confiáveis para avaliação dos progressos alcançados e ajuste do potencial de conservação de energia”, alerta Haddad.

Para o diretor executivo do Procobre, Glycon Garcia, as iniciativas de eficiência energética também não podem renunciar aos mecanismos de gestão, à troca de informações, articulação e coordenação. “Deve-se buscar sinergia nas iniciativas de eficiência energética que apresentam semelhanças e complementariedades. A execução das ações pode ser desempenhada de forma descentralizada e por vários agentes, mas os resultados precisam ser mensurados e monitorados periodicamente para que sua permanência seja justificada e isso resulte em uma base de dados legítima”, salienta Garcia.

O estudo, em sua primeira etapa, revisita todas as iniciativas de eficiência energética em curso desenvolvidas no país por ministérios e instituições públicas, um tema essencial para a competitividade e sustentabilidade do Brasil. A partir das atividades identificadas, são propostas 1) ações de caráter compulsório e abrangente e 2) ações de caráter voluntário e restritivo, sugerindo algumas diretrizes como a manutenção e integração dos atuais programas e ações de eficiência energética e o desenvolvimento de uma base de dados compartilhada. A isso, são apresentados nove projetos para o avanço da eficiência energética no Brasil.

Nesse sentido, o estudo propõe a elaboração de um projeto piloto em algum setor industrial que possibilite reunir e analisar os dados e informações possíveis de serem disponibilizados para, em seguida, compartilhá-los. Em uma etapa posterior, haveria separação das iniciativas sob o ponto de vista setorial, possibilitando estudos específicos, perspectivas tecnológicas e subsídios à estimativa do potencial de eficiência do uso da energia em segmentos industriais como a cadeia do alumínio (bauxita, alumina e alumínio); celulose e papel; cadeia siderúrgica; cerâmica; alimentos e bebidas; e química (petroquímica, gás-química, alcoolquímica, fertilizantes e sodacloro).

A etapa seguinte trata de uma modelagem de um sistema de informações com indicadores para o setor industrial, com detalhamento das informações disponibilizadas anualmente pelo Balanço Energético Nacional, com estatísticas que permitam comparações – benchmarking – entre as empresas e frente ao contexto internacional, e a avaliação de consumos específicos de referência, como a “Best Available Technology” e a inferência de potenciais de economia de energia.

As recomendações também abrangem a permanência das principais fontes de financiamento dos projetos de eficiência energética já existentes; a expansão da geração distribuída sem prescindir das mudanças de natureza tecnológica como a forma de contratação de energia e a continuidade de programas de conscientização das pessoas sobre o uso racional do insumo energético.

“A eficiência energética em indústrias, mediante tecnologias e práticas operacionais corretas, incrementa sua competitividade e atenua impactos ambientais. Observando a experiência dos países industrializados, é possível reforçar as ações governamentais de fomento à eficiência energética, coletando e difundindo informações que indiquem potenciais e prioridades e estimulem a redução das perdas de energia”, afirma Horta.

Os resultados obtidos com a experimentação dos projetos em subsetores poderão subsidiar medidas similares a serem adotadas progressivamente em toda a indústria brasileira, permitindo efetuar comparações consistentes no setor produtivo, definir metas de desempenho energético e implantar o monitoramento dos resultados.

* Com informações do Procobre

Publicado em Artigos Diversos, Brasil, Eficiência Energética, Leis | Marcado com , , , , , | Deixe um comentário

New NIBS-NBI Energy Tool to Help Cities Set Framework to Achieve Performance Goals

Fone / From: NIBS

Clique aqui para acessar a matéria em sua fonte / Click here to read this arcticle directly from NIBS Website.

The National Institute of Building Sciences (NIBS) and New Buildings Institute (NBI) have developed a new tool, with support from the U.S. Department of Energy and the Northwest Energy Efficiency Alliance, to help jurisdictions tackle energy use in buildings. The Life-Cycle Energy Performance Framework for Cities is now available on the WBDG Whole Building Design Guide® web portal.

Buildings are responsible for a significant portion — often the largest portion — of energy use or greenhouse gas (GHG) emissions within city borders. Yet, the cities setting measurable objectives to reduce energy use or GHG emissions are finding policies focused only on new construction are not enough to achieve such goals. They need a coordinated approach that also addresses the existing building stock.

NIBS and NBI convened a team of energy thought leaders to identify strategies cities could implement to address the energy use of buildings in a holistic fashion. Cities require comprehensive, long-term strategies that include policies, programs, administrative resources, tools and on-going funding sources. A few jurisdictions have some of these pieces in place. However, up until now, no single resource has described how these pieces relate to each other or how to implement them as a coherent whole. The Life-Cycle Energy Performance Framework for Cities does just that.

The web-based resource offers introduction and guidance tabs. Through a series of levels and drop downs, users can then customize their own path to implement life-cycle-based energy policies and print out tracking reports based on their responses. The top level, the organizational basis of the Framework, consists of four overarching categories: Leadership; Data, Analysis, and Applications; Mechanisms; and Ensuring Results. The categories are each broken into components with a brief description of the policy action, and examples and links for more information.

Each component has individual activities, structured as Policies, Actions, Resources and Tools, that the user can select based on the priorities and potential strategies of interest to the jurisdiction.

  • Policies require legislative or regulatory action by city leadership (mayor, city council, etc.), or within administrative agencies.
  • Actions are steps that generally should be undertaken at an administrative level.
  • Resources are either investments or capabilities that support realization of program goals.
  • Tools can be developed internally at the city level or at a national level and provide the mechanism to accomplish a specific strategy.

The user can use the drop-down menus associated with each individual element to designate the status of the element, including:

  • In Place: currently implemented and functioning.
  • In Process: in the process of being implemented.
  • In Planning: resources and processes are being identified for implementation in the near term.
  • In Projections: to be implemented at some point in the future.

To access the tool, users must have an account on the WBDG, which will allow them to customize their Framework, add notes on their timeline, list items to track, generate reports and update content as their jurisdictions make progress.

Log in to start using the Life-Cycle Energy Performance Framework for Cities. Don’t have a free WBDG account? Create one now.

Publicado em Artigos Tecnicos, Eficiência Energética, Sustentabilidade | Marcado com , , | Deixe um comentário

Receita Federal define EPIs como insumo para fins tributários

Fonte: AEC Web

Por: Yuri Soares

Acesse aqui a matéria diretamente em sua fonte.

A Receita Federal do Brasil decidiu, por meio da Solução de Consulta COSIT nº 183/2019, que equipamentos de proteção individual (EPIs) fornecidos a empregados alocados em atividades de produção de bens ou de prestação de serviços podem ser considerados insumos, para fins de apuração de créditos da Cofins (Contribuição para o Financiamento da Seguridade Social) e da Contribuição para o PIS/Pasep.

O entendimento foi tomado com base em julgamento do STJ (Superior Tribunal de Justiça). A Receita define, ainda, que uniformes fornecidos aos empregados não podem ser considerados insumos, exceto em casos de empresas que explorem as atividades de prestação de serviços de limpeza, conservação e manutenção.

 

Publicado em Brasil, Leis | Marcado com , | Deixe um comentário

Reduce PUE to unlock capacity in data centers

Fonte (Source): Consulting Specifying Engineer

Por (By): SUSHIL KUMAR, PE, CEM, LEED AP, MBA, EXP GLOBAL, LOS ANGELES MAY 15, 2019

Lei a matéria diretamente em sua fonte, clicando aqui.

Read this article directly from CSE wesite, clicking here.

CSE1904_WEB_FPUE_01-1024x612Figure 1: This shows examples of data center PUE boundaries. The most commonly reported boundary is shown by dotted line. Courtesy: EXP Global

Learning objectives

  • Define power usage effectiveness, its origin and current industry trends.
  • Learn about IT capacity, stranded capacity, equipment capacity and equipment IT capacity.
  • Understand how to create new sources of revenues by reducing PUE and increase return on investment by improving PUE.

Power usage effectiveness has long been used as a benchmark for data center efficiency, but it is seldom looked at as a tool to unlock stranded information technology capacity and to create a new source of revenue. This new capacity takes little time to build and comes with minimal capital investment. The return on investment is less than six months and can help corporations postpone capital expense required to build capacity.

PUE is a metric that describes how efficiently a computer data center uses energy. It is the ratio of the total amount of energy used by a data center facility to energy delivered to computing equipment. It was originally developed by Green Grid and was quickly adopted by many data center players. PUE was published in 2016 as a global standard under ISO/IEC 30134-2:2016.

Reducing PUE not only lowers utility bill operating expenditures, but also allows for a lower cost of construction (a capital expense), thereby improving return on investment for investors. In existing data centers, it can unlock new revenue potential using existing mechanical, electrical and plumbing infrastructure. Most analysis around lower PUE only accounts for cost savings from reduced power usage. When new revenue potential is included and could lead to a much higher return for the owners and operators.

Uptime Institute conducts an annual survey of average PUE for data center player across the globe. In 2018 it reported an average PUE of 1.6 across 713 participating data centers spread across the globe with the majority of the participants located in the U.S. and Europe. Uptime Institute’s research and surveys have found that PUE has dropped consistently during the past 10 years from a high of 2.5 in 2007 to 1.6 in 2018.

 

CSE1904_WEB_FPUE_01-500x299

Google has aggressively adopted PUE as a metric to keep its own data center energy usage low. Its data center portfolio has some of the lowest PUE in the world. In Q4 2018 it reported a trailing 12-month PUE of 1.11 across its fleet of 15 data centers globally. The company carefully defines IT load as processing power only; data center losses include power used by mechanical equipment, heat rejected by electrical equipment including uninterruptible power supplies, switchgear and feeders, plus utility transformers and electrical substation losses.

Defining PUE

There is a lot of ambiguity and inconsistency in how to measure PUE. Some players will include substation, step–down transformers, etc. in the PUE formula whereas others will measure power usage at the facility level. Telecommunication companies use centralized rectifiers, with 4 to 12 hours of lead-acid or valve-regulated lead-acid battery backup and feed direct current to switching and routing equipment. Most data entry operators use UPS systems with back–up batteries and feed alternating current to server racks, with a step–down transformer built into the server blades. These differences lead to inherent differences in PUE for different kinds of facilities.

Improving PUE not only helps with reducing energy cost but also can unlock valuable electrical and cooling infrastructure capacity. This will allow data center players to add revenue-generating IT capacity using existing electrical and mechanical infrastructure. Essentially this means adding sellable capacity without major infrastructure upgrade. The caveat is physical space constraints, which will not be considered here.

Measuring capacity

Most co-location data center companies sell IT capacity in kilowatts. IT capacity is sacrosanct for them. The more the IT capacity, the greater the potential revenue. Each kilowatt of additional IT capacity has a revenue potential of $200 to $300 per month. We will use $250/kilowatts/month in our calculations below.

We normalized capacity of mechanical, electrical and plumbing equipment in terms of kilowatt of IT capacity it can support. This allows for an easy comparison and analysis method. To achieve this, we defined a new term equipment IT capacity for each piece of mechanical cooling and electrical equipment in a data center. Equipment IT capacity is a function of peak PUE of the system, which in turn is a function of inefficiencies throughout the system.

Equipment IT capacity is measured in kilowatts.

e = equipment

x = a variable and is the name of equipment for which IT capacity is calculated

Equipment IT capacity for electrical equipment is calculated as below:

For example:

The available capacity of the switchboard is defined as the maximum continuous–duty capacity for the primary switchboard; redundant capacity is not counted. For example, some switchboards cannot be loaded more than 80% of their nameplate capacity for continuous operation. This data shall be obtained by the manufacturer and used in the calculations.

PUE of a data center varies with time and we define peak PUE as the highest observed PUE for the site during normal working conditions through the course of the year.

For cooling equipment (chillers, computer room air conditioning, air handling unit, etc.) equipment IT capacity is defined as the available IT cooling capacity of primary cooling equipment on design day; again, redundant capacity is not counted.

For example, a nominal 600-ton packaged air–cooled chiller could only provide 500-ton capacity on the design day defined as 0.4% ASHRAE annual cooling design condition after de-rating for 30% propylene glycol. A similar concept could be applied for computer room air conditioning units or other pieces of equipment.

For uninterruptible power supplies and rectifiers, equipment IT capacity is defined as maximum continuous duty capacity.

Note: The analysis above assumes that IT, cooling and other miscellaneous load is fed from the same source (utility service, generator and main service board), which is usually the case in most applications.

CSE1904_WEB_FPUE_02-500x277

Calculating costs

In Figure 2, the computer room air conditioning, utility, generator set, automatic transfer switch and main switchboard capacity at the data center far exceeds current IT load. Data center operators and planners can use this to make informed decisions about the cost of adding IT capacity at their sites. Using this information, operators can come up with a step function showing cost of the mechanical, electrical and plumbing upgrade for each additional 250 kilowatt of IT load. This information could be very powerful.

This solves capital allocation problem for large data center owners. Owners now have a one-page cost step function for each data center, which they can use to figure where to install new racks with minimum capital expense. This data is rarely available and will solve an important problem for owners and operators.

Figure 3 shows the impact of lowering PUE to 1.4 from the current 1.75. It shows a significant increase in IT capacity of utility, generator set, automatic transfer switch and main switchboard. Lowering PUE unlocks IT capacity of electrical equipment because the power used by mechanical and other supporting equipment is reduced.

CSE1904_WEB_FPUE_03-500x284

Completing a financial analysis 

Situation: The facility is a 1 megawatt data center with peak PUE of 1.75 built in 2010. The data center is maintainable with the 2N electrical power system and N+1 mechanical capacity. It currently is operating at capacity. Available capacity of electrical infrastructure is 1.75 megawatts.

PUE improvement project: Mechanical energy–efficiency improvements lowered peak PUE to 1.4. Mechanical improvements included:

  • Increasing supply air temperature and chilled water supply temperature. Containment of hot aisles and an increasing space temperature setpoint.
  • Optimizing sequence of operations of chilled water pumps and set points of computer room air conditioning units.
  • Installing adiabatic cooling pads on the condenser of the chiller plant.
  • Adding isolation dampers that allowed shutting down redundant computer room air conditioning units. Rebalancing system to move air where needed.
  • Optimizing lights and lighting controls.

Impact of PUE improvement on profit: Table 1 shows an impact on earnings before interest, tax, depreciation and amortization (gross profit) when PUE improvement resulted in both added IT capacity and savings from improved energy efficiency. In this scenario, 250 kilowatt of IT capacity was gained, which provided an additional $0.75 million annual revenue. Power cost (operating expenditures) didn’t change because mechanical, electrical and plumbing power usage was moved to support additional IT load. For sake of simplicity, it is assumed that expenditures only include power costs. Other costs are fixed and will not change because of peak PUE adjustment. Profit increased by 50.4%. Simple payback for this improvement is less than nine months.

Table 2 shows impact on gross profit when PUE improvement resulted in savings because of improved energy efficiency only. In this scenario, lower PUE leads to reducing power demand by 350 kilowatts. Reducing electrical demand leads to reducing power cost by $300,00. Again, expenditures only include power costs. Other costs are fixed and will not change because of peak PUE adjustment. We can see that profit increases by 20.3%. Simple payback is less than 10 months.

PUE has long been used as a benchmark to measure data center efficiency. Lowering PUE helps in reducing energy cost in data centers. Reducing PUE also unlocks new IT capacity that can allow data center owners to unlock new sources of revenue.

 

Publicado em Artigos Tecnicos, Eficiência Energética | Marcado com , , , , | Deixe um comentário